Michael Yurievich Zhukov
+7(863) 2184000
ext.
14016
Head of the department
Institute of Mathematics, Mechanics, and Computer Science named after of I.I. Vorovich
officer
Southern Federal University
Research interests:
Title: Professor
Degree: Doctor of Physical and Mathematical Sciences
Additional information:
Honorary Worker of Education of the Russian Federation.
Awards:
1. Jubilee Medal of the II degree for services to the Southern Federal University.
2. Certificate of Honor of the Ministry of Education of the Russian Federation.
3. Certificate of Honor of the Rostov University.
Position: Head of the Department of VMMF
Academic degree, title: Doctor of Physical and Mathematical Sciences, Professor
Research interests: Heat and mass transfer in multicomponent chemically and biologically active media in the presence of an electromagnetic field. Mathematical theory of electrophoresis. Nonequilibrium thermodynamics. Systems of quasilinear hyperbolic equations. Elliptic quasilinear equations describing quasiequilibrium media. Lie groups. Theory of hydrodynamic stability. Numerical methods for solving problems of the mathematical physics. Theory of liquid crystal anisotropic continuous media.
Total number of publications: 245
Monographs
1. Babsky V. G., Zhukov M. Yu., Yudovich V. I. Mathematical theory of electrophoresis: Application to methods of protein fractionation. Kiev, Naukova dumka, 1983. 204 p.
2. Babskii V. G., Zhukov M. Yu., Yudovich V. I. Mathematical Theory of Electrophoresis. New York and London: Consultants Bureau (Division of Plenum Press Inc.), 1989. 241 p.
3. Babsky V. G., Zhukov M. Yu., Kopachevsky N. D., Slobozhanin L. A., Tyuptsov A.D. Methods for solving problems of hydromechanics for weightlessness conditions. Kiev: Naukova dumka, 1992, 590 p.
4. Stoyanov A., Zhukov M. Yu., Righetti P.G., The Proteome Revisited: Theory and Practice of All Relevant Electrophoretic Steps. J. Chromatography, Vol. 63 . Elsevier, 2001. Chem. 572.6 R571 P967 2001, 462 p.
5. Zhukov M. Yu., Mass transport by an electric field. RostovonDon: RSU Publishing House, 2005. 216 p.
6. Zhukov M. Yu., Shiryaeva E. V. Using the FreeFem++ finite element package for problems of hydrodynamics, electrophoresis and biology. RostovonDon: SFU Publishing House, 2008. 256 p.
7. Zhukov M. Yu., Shiryaeva E. V. LaTeX2e: the art of typing and layout of texts with formulas. RostovonDon: SFU Publishing House, 2009. 192 p.
8. Zhukov M. Yu., Shiryaeva E. V. Microhydrodynamics, liquid films and electrophoresis..RostovonDon: SFU Publishing House, 2014. 240 p.
9. Zhukov M. Yu., Shiryaeva E. V. Solving problems of mathematical physics using the finite element package FreeFem++. RostovonDon: SFU Publishing House, 2014. 256 p.
10. Zhukov M. Yu., Courses of lectures for masters. I. Quasilinear hyperbolic equations. II. Application of Lie groups to differential equations. RostovonDon: SFU Publishing House, 2014. 144 p.
11. Zhukov M. Yu., Linear and nonlinear waves. Linear and Nonlinear Waves (In English). RostovonDon: SFU Publishing House, 2014 192 p.
12. Zhukov M. Yu., Shiryaeva E. V., Tsyvenkova O. A. Hydrodynamics and behavior of zone boundaries in isotachophoresis. RostovonDon: SFU Publishing House,2015. 94 p.
13. Zhukov M. Yu., Shiryaeva E. V. Polyakova N. M. Modeling of liquid drop evaporation. RostovonDon: SFU Publishing House,2015. 208 p.
14. Zhukov M. Yu., Shiryaeva E. V., Dolgikh T. F. Hodograph method for solving hyperbolic and elliptic quasilinear equations. SFU Publishing House,2015. 126 p.
15. Zhukov M. Yu., Shiryaeva E. V. Mathematical modeling of the sedimentation process in a fluid flow. SFU Publishing House. 2016. 208 p.
16. Zhukov M. Yu., Shiryaeva E. V. Polyakova N. M. Mathematical modeling of electrophoresis processes. SFU Publishing House. 2019. 160 p.
List of selected publications:
1. M. Yu. Zhukov and E. V. Shiryaeva. Solution of a Class of FirstOrder Quasilinear Partial Differential Equations. Trends in Mathematics, A. G. Kusraev, Z. D. Totieva (eds.). Springer Nature Switzerland AG. 2021., P. 331341.
2. Shiryaeva E.V., Vladimirov V.V., Zhukov M.Yu. Theory of rotating electrodynamic flows in a liquid film // Phys. Rev. E. 80. 041603 (2009). 15
3. Zhukov M. Yu., Dolgikh T. F. Mathematical models of liquid, gas and
electric field transport in multicomponent chemically active media \ \ Mathematical Forum. Vol. 13. Modern problems of mathematics and mathematical education. Vladikavkaz: YUMI VNC RAS, 2020. pp. 87104. (Results of science. South of Russia).
4. Shiryaeva, E.V., Zhukov, M.Y. On the tangential stresses at the boundary between the layers for twolayer sedimentation models. Polarforschung, 2017, 87(2), pp. 211–214
5. Zhukov, M.Yu., Shiryaeva, E.V. On the completeness problem of the equations for twolayer sedimentation models. Polarforschung, 2017, 87(2), pp. 215–222
6. Zhukov M. Yu., Polyakova N. M., Shiryaeva E. V. Quasistationary turbulent flow in a cylindrical channel with uneven walls. Bulletin of higher educational institutions. The North Caucasus region. Series: Natural Sciences. 2020. No. 1 (205). pp. 410.
7. Zhukov M. Yu., Shiryaeva E. V., Vasiliev A.V. Model of stationary turbulent flow and the process of sedimentation. Bulletin of higher educational institutions. The North Caucasus region. Series: Natural Sciences. 2019. No. 3 (203). pp. 414.
8. Zhukov M. Yu., Tsyvenkova O. A. Modeling of gravitational concentration convection in isotachophoresis. Bulletin of higher educational institutions. The North Caucasus region. Series: Natural Sciences. 2019. No. 4 (204). pp. 2735. 2
9. Dolgikh T. F., Zhukov M. Yu., Shiryaeva E. V. Solution of elliptic equations with periodic data for the problem of zonal electrophoresis. Bulletin of the Voronezh State University. Series: Physics. Mathematics. 2017. No. 2. pp. 8596.
10. Elaeva M. S., Zhukov M. Yu., Shiryaeva E. V. Interaction of weak discontinuities and the hodograph method for the problem of fractionation of a twocomponent mixture by an electric field. ( Elaeva M.S., Zhukov M. YU., Shiryaeva E.V. Interaction of weak discontinuities and the hodograph method as applied to electric field fractionation of a twocomponent mixture // Computational mathematics and mathematical physics. 2016. V. 56. No 8. P. 14401453).
11. M. Yu. Zukov, L. V. Sakharova, E. V. Shiryaeva. Approximation of weak solution for the problem of a pHgradient creation in isoelectrofocusing. Proc. R. Soc. A. 2014, V. 470, 20140290.
12. A. M. Morad. M. Yu. Zukov, The motion of a thin liquid layer on the outer surface of a rotating cylinder, European Physical Journal Plus, 2015, V. 130, No.1.
13. Ganchenko, G., Navarkar, A., Zhukov, M., Amiroudine, S. Two layer dielectricelectrolyte microflow with pressure gradient. MATEC Web of Conferences, 2016, P. 8488, 00009
14. Vladimirov, V.A., Zhukov, M.Yu. Vibrational Fréedericksz transition in liquid crystals. Physical Review E  Statistical, Nonlinear, and Soft Matter Physics, 2007, 76(3), 031706
15. Zhukov, M.Yu., Vladimirov, V.A. Analytical solution for thermal convection in a layer of liquid crystal with free surface. Molecular Crystals and Liquid Crystals, 2004, 413
16. Zhukov M. Yu., Shiryaeva E. V. Rotational EGD of flows in a suspended liquid film / / Izv. vuzov. Sev.Kavk. region. Natural sciences. science. 2009. N 5. p. 4447.
17. Zhukov M. Yu., Shiryaeva E. V., Vladimirov V. A. Numerical study of the EGD flow in a film. Izv. vuzov. Sev.Kavk. region. Natural sciences. science. Special issue "Actual problems of mathematical hydrodynamics", 2009. pp. 4650.
18. Zhukov M. Yu., Shiryaeva E. V., Morad A.M., Separation of infinitecomponent mixtures by an electric field, ZHVM i MF, 1994, vol. 34, N 4, pp. 576583.
19. Zhukov M. Yu., Shiryaeva E. V., Morad A.M., Investigation of shallow water equations on the surface of a stationary cylinder, Izv. Vuzov. Sev.  Kav. region. Natural sciences. science. 2014. N 5. P. 32;36.
20. Zhukov M. Yu., Shiryaeva E. V. Computer experiment on the evolution of liquid contours. Materials interd. schoolseminar "Nonlinear problems of the theory of hydrodynamic stability and turbulence". Moscow, February 1329, 2000. Moscow: MSU Publishing House, 2002. pp. 104119.
Teaching:

Numerical Methods

Application Lie groups to differential equations