Font size


Line height




Guennady Anatolievich Ougolnitsky 

+7(863) 218-40-00 ext. 14013

Заведующий кафедрой

Institute of Mathematics, Mechanics, and Computer Science named after of I.I. Vorovich

Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

Degree: Doctor of Sciences

Personal page in Russian:
Personal page in English:

Research interests:

Mathematical modeling of the hierarchical structures and control mechanisms in organizational and environmental-economic systems

Research projects:

RSF 17-19-01038 @Development of a complex theory of the sustainable management in active systems" (2017-2019);

RFBR 98-01-01024 «Modeling of the environmental-economic systems under man-made impact» (1998-1999);

RFBR 00-01-00725 «Modeling of hierarchical control of the sustainable development in the environmental-economic systems» (2000-2002);

RFBR 04-01-96812 «Mathematical modeling of the man-made dynamics of the water resource quality» (2004-2005);

RFBR 12-01-00017 «Mathematical modeling of corruptiuon in the hierarchical control systems» (2012-2014);

RFBR 15-01-00432 «Control mechanisms of the coordination of interests in the static models of resource allocation» (2015-2017); 

RFBR 18-01-00053 "Dynamic models of struggle against corruption" (2018-2020);

SFedU «Education in information technologies of the organizatiopnal and environmental-economic management» (2007);

SFedU «Development of the Department of Mathematics, Mechanics and Computer Sciences as a Cednter of Excellence » (2008);

SFedU «Models and Information Technologies in Management» (2013);

SFedU «Information Technologies, Mathematical Models and Decision Support Systems of Sustainable Management in Organizational Systems and Financial Markets » (2014-2016).


  • Discrete Mathematical Models
    1.Graph Theoretic Models of the Structure of Complex Systems 2. Cognitive Maps and Pulse Processes 3. Models of Collective Choice 4. Markov Chains
  • Game Theory and Applications
    1. Games in Normal Form 2. Cooperative Games 3. Hierarchical Games